本文共 1430 字,大约阅读时间需要 4 分钟。
一些基础知识
第一是OpenStack 。作为目前最流行的开源云版本,它包括控制器、计算 (Nova)、存储 (Swift)、消息队列 (RabbitMQ) 和网络 (Quantum) 组件。图 1 提供了这些组件的一个图示(不包含 Quantum 网络组件)。
▲图 1. OpenStack 的组件
这些组件共同提供了一个允许动态配给计算和存储资源的环境。从硬件角度看,这些服务可扩展到许多虚拟的和物理的服务器上。例如,大多数组织部署一个物理服务器作为控制器节点,部署另一个物理服务器作为计算节点。许多组织还选择将其存储环境分离到一个专用的物理服务器上,对于 OpenStack 部署而言,这意味着对 Swift 存储环境使用单独的服务器。
第二是大数据。 一般可以理解为三个数据源的数据汇集:传统数据(结构化数据)、感知数据(日志数据和元数据)和社交(社交媒体)数据。大数据通常采用新的技术模式进行存储,比如非关系分布式数据库 NoSQL。共有四种非关系数据库管理此系统 (NRDBMS):基于列、关键值、图表和基于文档。这些 NRDBMS 将源数据聚集在一起,同时用 MapReduce 之类的分析程序对汇总的信息进行分析。
传统的大数据环境包括一个分析程序、一个数据存储、一个可扩展文件系统、一个工作流管理器、一个分布式排序和散列解决方案以及一个数据流编程框架。常用于商业应用程序的数据流编程框架是 Structured Query Language (SQL),对于开源应用程序,通常会使用 SQL 的替代方案,如 Apache Pig for Hadoop。在商用方面,Cloudera 提供了最稳定、最全面的解决方案之一,而 Apache Hadoop 是最流行的开源 Hadoop 版本。
第三是Apache Hadoop 。包含多种组件,包括 Hadoop Distributed File System(即 HDFS,是一种可扩展的文件系统),HBase(数据库/数据存储)、Pig、Hadoop(分析方法)和 MapReduce(分布式排序和散列)。如图 2 所示,Hadoop 任务被分解为几个节点,而 MapReduce 任务则被分解为跟踪器 (tracker)。
▲图 2. HDFS/MapReduce 层的组成部分
图 3 显示了 MapReduce 如何执行任务,它将获取输入并执行一系列分组、排序和合并操作,然后呈现经过排序和散列的输出。
▲图 3. 高级 MapReduce 图
图 4 演示了一个更复杂的 MapReduce 任务及其组成部分。
▲图 4. MapReduce 数据流图解
尽管 Hadoop MapReduce 要比传统的分析环境(如 IBM Cognos和 Satori proCube 在线分析处理)更复杂一些,但它的部署仍然具有可扩展能力和高成本效益。
作者:王玉圆
来源:IT168
原文链接:将OpenStack部署到Hadoop的四种方案
转载地址:http://ouaea.baihongyu.com/